Accepted paper with abstract, SoCG'09

Boris Bukh, Jiri Matousek and Gabriel Nivasch

Lower Bounds for Weak epsilon-Nets and Stair-Convexity

A subset *N* of R^d is called a "weak epsilon-net" (with respect to convex sets) for a finite point set *X* in R^d if *N* intersects every convex set that contains at least $\varepsilon |X|$ points of *X*. For every fixed $d \ge 2$ and every $r \ge 1$ we construct subsets *X* of R^d for which every weak 1/r-net has at least $\Omega(r \log^{d-1} r)$ points; this is the first superlinear lower bound for weak epsilon-nets in a fixed dimension.